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Temperature Field Dependent Variation 
Computational Method for Non-Fourier Heat 

Conduction in Thin Film Semiconductor  
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Abstract— In recent years, the Dual Phase Lag (DPL) heat conduction equation proved itself to be one of the best choices for predicting both ob-
served micro scale and macro scale effects in the case of non-Fourier heat conduction in the micro/nano-scaled semiconductor devices and struc-
tures. In this publication, based on the Flow field Dependent Variation (FDV) methodology, we present a unique finite differenced Temperature field 
Dependent Variation Computational Method for characterizing and resolving the one dimensional DPL heat conduction equation for Silicon thin film 
resembling a micro-electronic structure subjected to a suddenly applied spatial temperature gradient at both the boundary ends. The uniqueness of 
this computational method is that at every time step, the matrix coefficients of finite differenced governing partial differential equation (PDE) based 
on FDV theory will change as the local adjacent spatial and temporal Temperature field changes and will correspondingly modify the governing 
PDE to solve the appropriate physics that are going on at each grid points. This work initiates the development of such local temperature based 
computational strategies for the numerical simulation of non-Fourier DPL heat conduction that will facilitate the optimized thermal stability and de-
sign of miniature transistors and circuits in the semiconductor industry 
 
Index Terms— FDV theory; DPL model, non-Fourier; Heat waves, micro/nano heat transfer; Microelectronic devices, MOSFET. 

——————————      —————————— 

1 INTRODUCTION                                                                     
o improve their function and speed, the modern electronic 
devices and circuits drastically reduce their sizes to mi-
cro/nano scale leading to a very high heat dissipation 

rates. As a result, the micro/nano heat conduction becomes an 
important issue for the accurate prediction of transient tem-
perature and heat flux distributions in the optimized thermal 
design of such miniature devices like Metal Oxide Semicon-
ductor Field Effect Transistors (MOSFETs) which has become 
the building blocks of the semiconductor industry.  Further 
scaling down to nanoscale electronics will result in a very high 
numbers of transistors assembled on an IC chip area no great-
er than a few square centimeters. 

   In most commonly encountered practical engineering 
problems, the heat conduction is characterized and resolved 
by the classical heat flux constitutive model of the Fourier’s 
type. However the parabolic Fourier model  admits no delay 
between the instants of applied spatial temperature gradient 
and heat flux leading to infinite speed of heat propagation 
which physically inadmissible. When the temperature gradi-
ent is suddenly applied, the heat conduction is non-Fourier in 
nature i.e. hyperbolic heat waves with finite speed takes place 
in very short transient time required to reach the steady state. 
The electrons, phonons and photons are various energy carri-
ers for heat transport at micro/nano levels.  Among these en-
ergy carriers, phonons, the quanta of lattice vibrations, are the 
foremost heat carriers in semi-conductor like silicon at and 
above the room temperature.  

As the length scale of the semiconductor devices and cir-

cuits reduces to the phonon’s mean free path and the time 
scale are comparable to the thermal relaxation time for pho-
nons collision, the classical heat flux constitutive model of the 
Fourier’s type results in erroneous transient temperature dis-
tributions. Due miniaturization of semiconductor devices, the 
classical heat flux constitutive model of the Fourier’s type is no 
longer [1], [2] an effective one for characterizing and resolving 
the micro/nano heat conduction in such electronic devices. On 
the other hand, the hyperbolic non-Fourier macro scale model 
records well the actual phenomena of finite heat propagation 
speed, it is the excellent choice for resolving the very rapid 
transient heat transfer process in micro/ nano electronic devic-
es.  

        The non-Fourier effects which are based on the concept 
of hyperbolic wave nature can be found initially in the works 
on the Telegraph equation [3] by Maxwell. Tisza (1935) and 
Landau (1941) first encountered the problem of second sound 
arose in the studies of heat waves in liquid helium -II. Catta-
neo (1948) first developed a mathematical theory [4] to correct 
the unacceptable nature of infinite speed of heat propagation 
in Fourier’s diffusion theory. Later the problem that infinite 
speed of propagation is generated by diffusion was addressed 
independently by Morse and Feshbach (1953) and Vernotte 
(1958). Joseph and Preziosi (1989-90) based on the analogy of 
shear waves in liquids and the thermal waves, proposed a 
thermal model [5] analogous to the well known Jeffrey’s model 
for stress and strain rate in liquids resulting in the heat flux 
constitutive model of Jeffrey’s type. Ballistic Diffusive equation 
and the phonon Boltzmann equation or the molecular dynam-
ics simulations can be applied to characterize and resolve [6] 
the heat conduction in nanoMOSFET. The numerical results 
indicate ballistic propagation as well as diffusive heat conduc-
tion. The draw backs [7] of micro/nano scale model based on 
phonon Boltzmann equation or the molecular dynamics simu-
lations are the high computational complexity and long simu-
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lation time. 
Tzou proposed a Dual Phase Lag model [8] , [9] which 

proved its capability to be the best choice for predicting both 
observed micro scale and macro scale effects in the case of 
non-Fourier heat conduction in the micro/nano-scaled semi-
conductor devices and structures . It permits to incorporate 
the micro/nano scale effects in the macro scale heat transport. 
This new heat flux constitutive model of the Tzou’s type re-
placing the classical heat flux constitutive model of the Fouri-
er’s type to characterize and resolve the non-classical heat 
transport  in ultra-fast laser heating of metals, hyperthermia 
treatment of  tumor, and micro/nano scale structures have  
been confirmed.  Ghazanfarian and Abbassi used the DPL 
model [10], [11] to simulate micro/nano scale heat conduction 
with temperature boundary conditions. Further application [2] 
of DPL model for a real 2D-MOSFET for temperature rise 
computation were carried out effectively. The DPL equation 
[8], [9] is presented below before proceeding to the FDV meth-
od.  The one dimensional heat flux constitutive model of DPL’s 
type is expressed as 
q(x, t +𝜏𝑞 ) =−k𝜕𝑇(𝑥,   𝑡+ 𝜏𝑇)

𝜕𝑥
                                                               (1) 

Where 𝜏𝑞 and 𝜏𝑇  are phase lag of heat flux and phase lag of 
spatial temperature gradient respectively. The 𝜏𝑞an 𝜏𝑇  are 
characteristics for a given material specimen.   

 Using Taylor’s series expansion of (1) up to the first order 
derivative yields: 

 q(x, t) +𝜏𝑞
𝜕𝑞(𝑥,   𝑡)

𝜕𝑡
 + О (𝜏𝑞2 )= −k

𝜕[ 𝑇(𝑥,𝑡 ) + 𝜏𝑇
𝜕𝑇(𝑥,   𝑡)

𝜕𝑡  + О(𝜏𝑇2 ) ]

𝜕𝑥
 

 q(x, t) +𝜏𝑞
𝜕𝑞(𝑥,   𝑡)

𝜕𝑡
  = ─ k  𝜕𝑇(𝑥,𝑡 )  

𝜕𝑥
 ─ k𝜏𝑇

𝜕( 𝜕𝑇(𝑥,𝑡 ) 
𝜕𝑥  ) 

𝜕𝑡
                          (2)               

The DPL heat conduction equation based on heat flux consti-
tutive law (2) is expressed as 
  1
𝛼
𝜕𝑇(𝑥,𝑡)
𝜕𝑡

+ ( 1
𝑎2

 )𝜕
2𝑇(𝑥,𝑡)
𝜕𝑡2

  =   𝜕
2𝑇(𝑥,𝑡)
𝜕𝑥2

 + 𝜏𝑇
𝜕3𝑇(𝑥,𝑡)
𝜕𝑥2𝜕𝑡

                                 (3)                                      
 
Depending upon the selection of the 𝜏𝑞 , 𝜏𝑇  and 𝐹𝑇  in (2)-(3) 

DPL model yields to different [12], [13], [9] known heat con-
duction models as in Table 1: 

 
Table 1  

Different Heat conduction models 
τq τ τ 0 or 1 
τT τ (k1 k⁄ ) = K 0 0 or 1 
𝐹𝑇 = 𝐊 τ⁄  0 < 𝐹𝑇 < 1 𝐹𝑇 = 0 𝐹𝑇 = 1 
Model Jeffrey Cattaneo- 

Vernotte 
Fourier 

Heat flux 
Eq. 

q + τ ∂q ∂t⁄  = 
─ k ∂T ∂x⁄  ─ τ 

k1  ∂(∂T ∂x⁄   ) ∂t⁄  

q + τ ∂q ∂t⁄  = 
─ k ∂T ∂x⁄  

q = 
─k  ∂T ∂x⁄  

Heat 
Cond.Eq. 

1 𝛼⁄  𝜕𝜕 𝜕𝜕⁄  + 
(1 𝑎2⁄ ) 𝜕2𝜕 𝜕𝜕2⁄  
= 𝜕2𝜕 𝜕𝑥2⁄  + K 
𝜕3𝜕 𝜕𝑥2𝜕𝜕⁄  

1 𝛼⁄  𝜕𝜕 𝜕𝜕⁄  + 
(1 𝑎2⁄ ) 

𝜕2𝜕 𝜕𝜕2⁄  = 
𝜕2𝜕 𝜕𝑥2⁄  

1 𝛼⁄  𝜕𝜕 𝜕𝜕⁄  
= 𝜕2𝜕 𝜕𝑥2⁄  

 
 
This model incorporates the commonalities [9] among the 

phonon- electron interactions based models for metals and 
phonon scattering based models for semiconductors, dielectric 

crystals and insulators and thereby leading to a unified model 
for investigation of a variety of heat transfer problems. The 
generalized DPL model looks very promising for future re-
search because it shows very good agreement with experiment 
across a wide range of both length and time scales in heat 
transfer situations. This paper presents a numerical simulation 
for very rapid transient heat conduction in a thin film of sili-
con by applying the DPL model. When compared to the other 
researchers for similar work of applying the DPL partial dif-
ferential equation (3), the only difference of the present work 
is that we apply this partial differential equation not in its 
original form but in a modified form of incremental partial 
differential equation obtained by applying the FDV methodol-
ogy to the original DPL equation (3). Brief note on FDV theory 
before we present the FDV based computational formulation 
in the next heading. 

One of the tough challenges in Computational Fluid Dy-
namics (CFD) is how to deal with very rapid changes of the 
solution variables like pressure, temperature, velocity and 
density both in time and space, where we are faced with 
smallest time and length scales for very high gradient of such 
solution variables. Compounding these challenges are the 
computational difficulties in resolving real complex flows as 
they are mixtures of physical phenomena like transition from 
laminar to turbulent flow, interactions between viscous & in-
viscid flows, and incompressible & compressible flows. To 
tackle these challenges and resolve simultaneous all physical 
situations of fluid dynamics and classical heat transfer, Chung 
et al. [14], [15], [16], [17] have introduced FDV method just at 
dusk of the 20th century. Since its inception, many benchmark 
cases of fluid dynamics and classical heat transfer [18] have 
been solved by FDV method to prove its excellent solution 
accuracy and numerical stability. Here we apply FDV method 
to DPL equation (3) and resolve the heat transfer phenomena 
influenced by both non-Fourier and Fourier heat transport 
effects and mechanism in a single domain of a semiconductor 
material. 

The energy equation component of the conservative Na-
vier-Stokes System of equations (continuity equation, momen-
tum equations and energy equation) for pure heat conduction 
in a constant density property static fluid i.e. zero flow veloci-
ty components is also [19] the well known  unsteady heat con-
duction equation in solid. That is both energy equation con-
stituent of Navier-Stokes System of equations for pure heat 
conduction in a static fluid and the unsteady heat conduction 
equation for solid is same if we substitute the density of the 
solid for the static fluid density. .Hence in the present work, 
for any analysis of unsteady heat conduction in solid (semi-
conductor) we opt the for equivalent energy equation compo-
nent of Navier-Stokes System of equations for a pure heat 
conduction in static fluid whose constant density is same as 
that of the solid under consideration. For numerical simula-
tion of very rapid transient heat conduction in a thin film of 
solid silicon, the need of energy equation component of the 
conservative Navier-Stokes System of equations arises from 
the fact that FDV computational formulation is derived from 
the specialized final form of Taylor series expansion up to and 
including second order time derivative of the conservative 
energy solution variables component of the Navier-Stokes Sys-
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tem of equations with finite diffusion flux variables. The diffu-
sion FDV parameters managing transient temperature field 
discontinuity i.e. heat waves are defined from the changes of 
temperature between the adjacent grids points at each time 
marching step. Thus the temperature based finite differenced 
FDV equation on applying to the computational domain grid 
points results into a system of linear, algebraic equations 
which can be solved using standard algorithm of matrix solver 
to compute transient temperature solution variables at all grid 
points in the domain. 

The advantage of using original DPL equation (3) in the 
modified form of incremental partial differential is that at eve-
ry time step, the matrix coefficients of the modified equation 
based on FDV theory will change as the local adjacent spatial 
and temporal temperature field changes and will correspond-
ingly modify the governing PDE to solve the appropriate 
physics that are going on at each grid points. This is in con-
trast with other existing computational methods where nor-
mally such coefficients been expressed only in terms of con-
ducting medium’s thermo-physical properties and computa-
tional spatial & time increments remains same.  Consequently 
in all such other computational methods in general, a pre-
determined computational formulation dictates the computa-
tional heat transfer (CHT) solution for both non-Fourier and 
Fourier situations. On other hand, the FDV computational 
method provides the best distinct computational scheme for 
every point of the computational domain at a given instant of 
time when compared to the other CFD /CHT methods for heat 
transfer. This fact is established in this paper through the final 
presentation of the computational results which upholds the 
existence of heat waves in the thin Silicon film subjected im-
pulsive boundary temperature conditions and demonstrates 
the propagation process of heat waves, the magnitude and 
profile of transient temperature in contrast with the classical 
Fourier heat conduction. 

2  COMPUTATIONAL FORMULATION 
By a Taylor’s series expansion strategy [20], [21] and substi-

tuting the density of the thin silicon film for the static fluid 
density, the original DPL heat conduction equation can be re-
developed into an equation form resembling the energy equa-
tion component of conservative Navier-Stokes System of equa-
tions (continuity equation, momentum equations and energy 
equation) for pure heat conduction in a constant density prop-
erty static fluid i.e. flow velocity components are zeros. The 
redeveloped DPL heat conduction equation is given respec-
tively as: 
  𝜕𝑇�𝑥,   𝑡 + 𝜏𝑞�

𝜕𝑡
= α 𝜕

2[𝑇(𝑥,   𝑡+𝜏𝑇) ]
𝜕𝑥2

                                                          (4a) 
𝜕[𝜌𝑐𝑇�𝑥,   𝑡 + 𝜏𝑞�]

𝜕𝑡
 + 

𝜕 {𝜕 [ −𝑘 𝑇(𝑥,   𝑡 + 𝜏𝑇)] 
𝜕𝑥 } 

𝜕𝑥
=0                                     (4b) 

The energy equation component of the Navier-Stokes Sys-
tem of Equations for pure heat conduction in a constant densi-
ty (numerically equating to the density of silicon)   property 
static fluid condition (velocityv1=u=0) without source terms for 
1-D can be expressed in conservative form [19], [17] as  

𝜕𝑼
𝜕𝑡

+ 𝜕𝑭1
𝜕𝑥1

+ 𝜕𝑮1
𝜕𝑥1

=0                                                                    (5) 

Where U =[𝜌𝜌𝜕] , 𝑭1=[0]& 𝑮𝟏 = �− 𝑘𝜕,1�                              (6) 

              ∴ 𝜕𝑼
𝜕𝑡

+ 𝜕𝑮1
𝜕𝑥1

 = 0                                                                     (7a)                      

            𝜕[𝜌𝑐𝑇]
𝜕𝑡

+𝝏�−𝑘𝑇,𝟏�
𝜕𝑥1

 = 0                                                                (7b)           
The comma in expression 𝐆1 indicates partial derivative 

with respect to independent variable x1 (= x). As discussed 
earlier that energy equation component of conservative Na-
vier-Stokes System of equations for pure heat conduction in a 
constant density property static fluid is nothing but the well 
known unsteady heat conduction equation in solid (silicon). 
Hence (7b) is also the well known 1-D unsteady heat conduc-
tion equation in solid (silicon). On comparing (4b) & (7a), it 
shall be noted the form of the both equations are same. There-
fore on equating the corresponding terms: 
ρcT(x, t +𝜏𝑞) = U(x, t +𝜏𝑞) =𝑼𝜏𝑞          &                                       (8a)         
    𝜕 [ − 𝑘 𝑇(𝑥,   𝑡 + 𝜏𝑇)] 

𝜕𝑥
 = G(x, t +𝜏𝑇) = 𝑮𝜏𝑇                                         (8b) 

 Thus we can transform the (3) into a form similar to (7a) 
[resulted from the (5)] through (4b). That is by Taylor’s series 
expansion strategy as adopted in our earlier investigation [20], 
[21]  the original two term L.H.S form DPL heat conduction 
equation (3) can be now redeveloped into such a single term 
L.H.S form (4a) which now resembles the energy equation 
component of the conservative Navier-Stokes System of equa-
tions whose specialized final form of Taylor series expansion 
up to and including second order time derivative  yields to the 
final  FDV computational formulation for DPL equation (4b). 
 Using Taylor’s series expansion of (8) up to the first order 
derivative yields: 

𝑼𝜏𝑞 =U(x, t +𝜏𝑞) = U(x, t) + 𝜏𝑞
𝜕𝑼(𝑥,𝑡)
𝜕𝑡

  & 

  𝑮𝜏𝑇 =G (x, t +𝜏𝑇) = G(x, t) + 𝜏𝑇
𝜕𝑮(𝑥,𝑡)
𝜕𝑡

 
   Also from (8a) & (8b),  ρcT(x, t +𝜏𝑞) =U(x, t +𝜏𝑞 )   
&    𝜕 [ − 𝑘 𝑇(𝑥,𝑡 + 𝜏𝑇)] 

𝜕𝑥
 = G(x, t +𝜏𝑇) 

     Thus (4b) is expressed as 
    

𝜕𝑼𝜏𝑞
𝜕𝑡

+ 𝜕𝑮𝜏𝑇
𝜕𝑥

 =   0   or     
𝜕𝑼𝜏𝑞

𝒏

𝜕𝑡
 + 𝜕𝑮𝜏𝑇

𝒏

𝜕𝑥
 = 0                                          (9) 

 
            Applying the FDV methodology [17] to partial dif-

ferential equation (9) whose original form is DPL heat conduc-
tionequation (3) and expanding 𝐔𝜏𝑞

𝑛+1 in a special form of Tay-
lor series about 𝐔𝜏𝑞

𝑛  up to and the second - order time deriva-
tives with inclusion  the appropriate first order (s3) & second 
order ( s4) FDV diffusion parameters for the first and second 
order derivatives of 𝐔𝜏𝑞

𝑛  with respect to time respectively, 
yieldsto the present work’s derived modified form of incre-
mental differential equation for non-Fourier heat conduction 
in constant property static fluid or in solid (silicon)  as pre-
sented below with O(∆t3) :  

 ∆𝑼𝜏𝑞
𝑛+1=─−𝑬1𝑛

  𝜕(∆𝑼𝜏𝑞
𝑛+1)

𝜕𝑥
− ─𝑬11𝑛

𝜕2�∆𝑼𝜏𝑞
𝑛+1�

𝜕𝑥2
─− 𝑸𝑛                       (10a)                  

∆𝑼𝜏𝑞
𝑛+1 + 𝑬1𝑛

  𝜕(∆𝑼𝜏𝑞
𝑛+1)

𝜕𝑥
 +  𝑬11𝑛

𝜕2�∆𝑼𝜏𝑞
𝑛+1�

𝜕𝑥2
= −─ 𝑸𝑛                       (10b)                  

Where                                                                                                                                                                                                           
𝑬1𝑛 =(∆𝜕𝑠3𝒃1)𝑛                                                                             (11a) 
𝑬11𝑛 =�∆𝜕𝑠3𝒄11 −

∆𝑡2

2
𝑠4(𝒃1)2�

𝑛
                                                    (11b) 

𝑸𝑛   = �∆𝜕
𝜕𝑮𝜏𝑇

𝒏

𝜕𝑥
− ∆𝑡2

2
𝒃1𝑛

𝜕𝟐�𝑮𝜏𝑇
𝑛 �

𝜕𝑥𝟐
�                                                 (11c) 

In the FDV equattion (10b) for DPL heat conduction, for fur-
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ther processing it for numerical simulation, the terms  𝑬1𝑛 and 
𝑬11𝑛  are taken as constants during present  numerical iteration 
time step  , but updated for the next iteration time step.  
             Similarly the present work’s derived FDV equation for 
three dimensional DPL heat conduction of non-Fourier’s type 
in constant property static fluid or in solid (silicon) can ex-
pressed as below: 

∆𝑼𝜏𝑞
𝑛+1 + 𝑬𝑖𝑛

  𝜕(∆𝑼𝜏𝑞
𝑛+1)

𝜕𝑥𝑖
 +  𝑬𝑖𝑗𝑛

𝜕2�∆𝑼𝜏𝑞
𝑛+1�

𝜕𝑥𝑖𝜕𝑥𝑗
= ─𝑸𝑛                             (12) 

𝑼𝜏𝑞 =U [(x, y, z), (t +𝜏𝑞)]                                                       (13a) 
 𝑮𝜏𝑇𝒊 =G (𝑥𝑖, t +𝜏𝑇)                                                                 (13b)                
𝑬𝑖𝑛  = (∆𝜕𝑠3𝒃𝑖)𝑛                                                                       (13c)  

    𝑬𝑖𝑗𝑛 = �∆𝜕𝑠3𝒄𝑖𝑗 −
∆𝑡2

2
𝑠4𝒃𝑖𝒃𝑗�

𝑛
                                                  (13d) 

    𝑸𝑛   = �∆𝜕
𝜕𝑮𝜏𝑇𝒊

𝒏

𝜕𝑥𝑖
− ∆𝑡2

2
𝒃𝑖𝑛

𝜕𝟐�𝑮𝜏𝑇𝒋
𝑛 �

𝜕𝑥𝑖𝜕𝑥𝑗
�                                           (13e) 

    𝒃𝑖= 
𝜕𝑮𝜏𝑇𝑖
𝜕𝑼𝜏𝑞

   &    𝒄𝑖𝑗= 
𝜕𝑮𝜏𝑇𝑖
𝜕𝑼𝜏𝑞,𝑗

                                                           (13f)                 

 
                     The finite difference method (FDM), finite element 
method (FEM) or finite volume method (FVM) can be used 
[17] to discretize numerically the present work’s finally result-
ed governing FDV equations (10b) and (12) for 1D and 3D 
non-Fourier DPL heat conduction in constant property static 
fluid or in solid (silicon) respectively. Consequently the dicre-
tize method is set aside as the option of the computational 
heat transfer analysts / computational fluid dynamicists. 

            As exemplar, numerically discretizing the FDV 
equation (10b) by FDM is illustrated next. On approximating 
first order and second order spatial derivatives of (10b) at each 
grid point (i-1, i, i+1) by second order accurate central finite 
differences, we present the final derived finite-differenced 
FDV equation (14) for one dimensional non-Fourier  DPL heat 
conduction in constant property static fluid or in sol-
id(silicon)as below with O(∆x2,∆t3) : 

�∆𝑼𝜏𝑞�𝑖
𝑛+1

+(𝑬𝟏)𝒊𝑛 �
�∆𝑼𝜏𝑞�𝑖+1

𝑛+1
−�∆𝑼𝜏𝑞�𝑖−1

𝑛+1

2∆𝑥
� +

(𝑬𝟏𝟏)𝒊𝑛 �
�∆𝑼𝜏𝑞�𝑖+1

𝑛+1
−2�∆𝑼𝜏𝑞�𝑖

𝑛+1
+�∆𝑼𝜏𝑞�𝑖−1

𝑛+1

∆𝑥2
� =  ─ 𝑸𝑖

𝑛 

�(𝑬𝟏𝟏)𝒊
𝒏

∆𝑥2
− (𝑬𝟏)𝒊

𝑛

2∆𝑥
����������

𝑨𝑖
𝑛

�∆𝑼𝜏𝑞�𝑖−1
𝑛+1

+�1 − 2(𝑬𝟏𝟏)𝒊
𝒏

∆𝑥2
����������

 𝑩𝑖
𝑛

�∆𝑼𝜏𝑞�𝑖
𝑛+1

+

�(𝑬𝟏)𝒊
𝑛

2∆𝑥
+ (𝑬𝟏𝟏)𝒊

𝒏

∆𝑥2
����������

𝑪𝑖
𝑛

�∆𝑼𝜏𝑞�𝑖+1
𝑛+1

  =  −  𝑸𝑖
𝑛 

 𝑨𝑖𝑛 �∆𝑼𝜏𝑞�𝑖−1
𝑛+1

 + 𝑩𝑖
𝑛 �∆𝑼𝜏𝑞�𝑖

𝑛+1
 +𝑪𝑖𝑛 �∆𝑼𝜏𝑞�𝑖+1

𝑛+1
 = ─𝑸𝑖

𝑛      (14)                      
 

Where 
  (𝑬𝟏)𝒊𝑛= (∆𝜕𝑠3𝒃𝑖)𝑛                                                                      (15a) 
(𝑬𝟏𝟏)𝒊𝑛=  �∆𝜕𝑠3𝒄11 −

∆𝑡2

2
𝑠4(𝒃1)2�

𝑖

𝑛
                                            (15b) 

�𝑮𝜏𝑇�𝒊
𝑛 = − k �

�𝑇𝜏𝑇�𝑖+1
𝑛

−�𝑇𝜏𝑇�𝑖−1
𝑛

2∆𝑥
�                                                     (15c) 

(𝒃𝟏)𝒊𝑛 = �
𝜕𝑮𝜏𝑇
𝜕𝑼𝜏𝑞

�
𝑖

𝑛
 =

�𝑮𝜏𝑇�𝑖
𝑛
−�𝑮𝜏𝑇�𝑖

𝑛−1

�𝑼𝜏𝑞�𝑖
𝑛
−�𝑼𝜏𝑞�𝑖

𝑛−1                                                (15d) 

(𝒄11)𝑖𝑛= �
𝜕𝑮𝜏𝑇
𝜕𝑼𝜏𝑞 ,𝑖

�
𝑖

𝑛
= 

�𝑮𝜏𝑇�𝑖
𝑛
−�𝑮𝜏𝑇�𝑖

𝑛−1

�
�𝑼𝜏𝑞�𝑖+1

−�𝑼𝜏𝑞�𝑖−1
2∆𝑥 �

𝑛

− �
�𝑼𝜏𝑞�𝑖+1

−�𝑼𝜏𝑞�𝑖−1
2∆𝑥 �

𝑛−1      (15e)         

𝑸𝑖
𝑛 = ∆𝜕 �

�𝑮𝜏𝑇�𝑖+1
−�𝑮𝜏𝑇�𝑖−1
2∆𝑥

�
𝑛

− ∆𝑡2

2
𝒃𝑖𝑛 �

�𝑮𝜏𝑇�𝑖+1
− 2�𝑮𝜏𝑇�𝑖

+   �𝑮𝜏𝑇�𝑖−1
∆𝑥2

�
𝑛

        

                                                                                                       (15f)                                                                      

(𝑠3)𝒊𝑛  =  � 𝑠3𝑆𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙�𝒊
𝑛

=   
� 𝑠3𝑆𝑝𝑎𝑡𝑖𝑎𝑙�𝒊

𝑛
+ � 𝑠3𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙�𝒊

𝑛

2
        (15g)     

�𝑠𝑆𝑝𝑎𝑡𝑖𝑎𝑙�𝒊
𝑛= 

�𝒎𝒂𝒙(𝑇𝑖−1
𝑛  ,   𝑇𝑖+1

𝑛 )𝟐−𝒎𝒊𝒏(𝑇𝑖−1
𝑛  , 𝑇𝑖+1

𝑛 )𝟐

𝒎𝒊𝒏(𝑇𝑖−1
𝑛  ,   𝑇𝑖+1

𝑛 )
                    (15h) 

�𝑠𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙�𝒊
𝑛=

�𝒎𝒂𝒙(𝑇𝑖
𝑛−1 ,   𝑇𝑖

𝑛)𝟐−𝒎𝒊𝒏(𝑇𝑖
𝑛−1 ,   𝑇𝑖

𝑛)𝟐

𝒎𝒊𝒏(𝑇𝑖
𝑛−1 ,   𝑇𝑖

𝑛)
                      (15i) 

(𝑠3)𝒊𝑛=�
𝜇𝑖𝑛((𝑠)𝒊𝑛 , 1) (𝑠)𝒊𝑛 > 𝜔 (𝜔 < 1)

0 (𝑠)𝒊𝑛 < 𝜔 𝜕𝑚𝑖𝑛 ≠ 0                     (15j) 

(𝑠4)𝒊𝑛=[𝑓 (𝑠3,𝜂)]𝑖𝑛 or = 1
2

{1 + [(𝑠3)𝒊𝑛]𝜂}                        (15k) 
 

               The value for 𝜔 in (15j) and the range for 𝜂 in  (15k) 
can be known from [17]. In (14) combined with (15a) to (15k)  , 
because of the three time levels in this FDM, initial data must 
be known at two time levels i.e. n & n-1 time levels. These data 
can be known if the time derivative of temperature is specified 
at t=0. The finite-differenced FDV equation (14) on applying to 
the grid points in a one-dimensional computational domain 
combined with two initial & two boundary conditions, results 
into a system of linear, algebraic equations which can be 
solved using standard algorithm of matrix solver to compute 
compute �∆𝑼𝜏𝑞�𝑖

𝑛+1
variables at all grid points in the domain 

for time level n+1. Thomas algorithm of tri-diagonal matrix 
solver can be used if tri-diagonal system of linear, algebraic 
equations is generated at each time step. Whichever algorithm 
of matrix solver is used, it should include the provision of up-
dating  𝑨𝑖𝑛, 𝑩𝑖

𝑛 ,𝑪𝑖𝑛 &  𝑸𝑖
𝑛  in (14) at  subsequent time steps.   

 
To obtain the primitive temperature solution variables, we 

must decode the computed element �∆𝐔𝜏𝑞�i
n+1

 as follows 

�𝑼𝜏𝑞�𝑖
𝑛+1

─ �𝑼𝜏𝑞�𝑖
𝑛
   =  �∆𝑼𝜏𝑞�𝑖

𝑛+1
 

From (8), 

�𝜌𝜌𝜕(𝑥, 𝜕 + 𝜏𝑞  ) �
𝑖

𝑛+1─�𝜌𝜌𝜕(𝑥, 𝜕 + 𝜏𝑞  ) �
𝑖

𝑛  =   �∆𝑼𝜏𝑞�𝑖
𝑛+1

      

�𝜕(𝑥, 𝜕 + 𝜏𝑞  )�
𝑖

𝑛+1   =  
�∆𝑼𝜏𝑞�𝑖

𝑛+1

𝜌𝑐
+ �𝜕(𝑥, 𝜕 + 𝜏𝑞  ) �

𝑖

𝑛                 (16) 
Using Taylor’s series expansion of T(x, t +𝜏𝑞) up to the first 
order derivative yields [20] with truncation error O (𝜏𝑞 P

2) 
T(x, t +𝜏𝑞) = T(x, t) + 𝜏𝑞

𝜕𝑇(𝑥,𝑡)
𝜕𝑡

                                                     (17) 
Applying (17) in (16)                                                                                                 

�𝜕(𝑥, 𝜕 + 𝜏𝑞
𝜕𝑇(𝑥,𝑡)
𝜕𝑡

�
𝑖

𝑛+1
=  

�∆𝑼𝜏𝑞�𝑖
𝑛+1

𝜌𝑐
+ �𝜕(𝑥, 𝜕 ) +  𝜏𝑞

𝜕𝑇(𝑥,𝑡)
𝜕𝑡

�
𝑖

𝑛
   (18a)              

[𝜕(𝑥, 𝜕 )  ]𝑖𝑛+1+�𝜏𝑞
𝜕𝑇(𝑥,𝑡)
𝜕𝑡

�
𝑖

𝑛+1
=
�∆𝑼𝜏𝑞�𝑖

𝑛+1

𝜌𝑐
+ [𝜕(𝑥, 𝜕 )  ]𝑖𝑛 + �𝜏𝑞

𝜕𝑇(𝑥,𝑡)
𝜕𝑡

�
𝑖

𝑛
           

(18b) 
In the (18b), approximating the first order time derivative at 
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(n+1)th and (n)th time  level by the temporal first order back-
ward finite differences, we have 

[T(x, t )]in+1+𝜏𝑞 �
[T(x,t )]i

n+1−[T(x,t )]i
n

∆t
�=

�∆𝐔𝜏𝑞�i
n+1

ρc
+ [T(x, t )]in 

+𝜏𝑞 �
[T(x,t )]i

n−[T(x,t )]i
n−1

∆t
� 

On re-arranging the terms in the above equation,     

[𝜕(𝑥, 𝜕 )]𝑖𝑛+1=
1

�1+ 
𝜏𝑞
∆𝑡�
�
�∆𝑼𝜏𝑞�𝑖

𝑛+1

𝜌𝑐
 +

�1 + 2𝜏𝑞
∆𝑡
� [𝜕(𝑥, 𝜕 )]𝑖𝑛 ─�𝜏𝑞

∆𝑡
� [𝜕(𝑥, 𝜕 )]𝑖𝑛−1�                                   (19a) 

Dropping (x, t) for clarity, we have  
 
 
 
                                                                                            
                                                                                                 (19b) 
Thus from (19b) based on FDV method, primitive tempera-

ture solution of a one dimensional non-Fourier DPL heat con-
duction is computed that is repeated for each time step as the 
heat  wave proceeds through the static fluid with constant 
mass density or the solid medium (silicon) with a constant 
speed . Further we can also derive finite differenced FDV 
equation for three non-Fourier DPL heat conduction problems 
in static fluid with constant mass density or in medium (sili-
con) by approximating the first order and the second order 
spatial derivatives of (12) at each grid point by second order 
central differences schemes or any other differences schemes 
of higher-order accuracy. The resulting finite-differenced FDV 
equations at various grid points are then solved by using 
standard algorithm of matrix solver to compute 
∆𝐔𝜏𝑞

n+1[=[∆𝐔�x, y, z, t + 𝜏𝑞�]n+1] variables at all grid points (x, 
y, z) in the 3D-domain.  Further on decoding the computed 
element[∆𝐔�x, y, z, t + 𝜏𝑞�]n+1, we can obtain the primitive 
temperature solution variables  [T(x, y, z, t)]n+1at all grid points 
(x, y, z) in the 3D-domain non-Fourier DPL heat conduction.  

3 RESULTS AND DISCUSSION 
                      As a computational example, we consider one 

dimensional non-Fourier DPL heat transport effects in a solid 
medium like semiconductor material. Silicon been the most 
common materials in semiconductor devices, we opt this ma-
terial as medium for which numerical simulation of non-
Fourier DPL heat conduction is carried by FDV method. The 
elementary thermo-physical properties like density, specific 
heat and thermal conductivity of the silicon are taken from 
any material property table respectively as 2328 kg / m3, 700 
J/kg-K and 155 W/m-K. We assume these thermo-physical 
properties are constant. Heat Conduction Model Number FT = 
𝐊
τ
   was introduced by Tamma and Zhou [12], [13] to improve 

the understanding relationships between the various heat flux 
constitutive models. From the Table.1, when we apply this 
number to the DPL heat flux constitutive model, we obtain FT 

= 𝜏𝑇
𝜏𝑞

. Working out to determine [22]  𝜏𝑞 and 𝜏𝑇  values for semi-

conductor material the silicon [9], [23] for a phonon frequency 
2X1013 s-1 and temperature range of 300K -320K and substitut-
ing the values, we obtain FT = 0.45. 

  One dimensional constant thermo-physical property sili-
con thin film of thickness 𝑙 of the order of 𝜇𝜇is considered for 
analysis and is discretized into total fifty grids points i.e. forty 
eighty intermediate grid points in x-direction. The criteria for 
obtaining a stable numerical solution for hyperbolic character-
ized non-Fourier DPL heat  conduction in the silicon thin film 
in general is to keep [19], [24], [25], [26]  the Courant number, 
C = a∆𝑡

∆𝑥
 , less than or at most to unity.  In this work, we tested 

various Courant numbers from 0.40 to 1.00 and opted for C= 
0.80 as it allows a stable numerical solutions and as well it is 
advantageous to moderately minimize the number of compu-
tational iterations for convergence of the solution. As a result 
based on C= 0.80, the time step for stable numerical solution, 
was determined as, ∆t=C ∆x/a =C (𝑙/49)/�α/τ = 0.8(3.41X10−6/
49)/�0.95X10−4/1.28X10−9  =2.049X10-10s i.e. the order of time 
step for computational iteration is 10-10 s 

The various thermal boundary conditions [27] affecting the 
temperature distributions of non-Fourier heat conduction in 
electronic package are specified temperature, constant heat 
flux, convective heat transfer and periodic heat flux/short 
pulsed laser heating.  The major objective of the present work 
is to carry out under specified temperature boundary condi-
tions, a numerical simulation of non-Fourier DPL heat conduc-
tion in silicon, the most common material for micro / nano 
electronic devices. The one dimensional bench mark miniature 
structure analyzed in this paper as mentioned earlier is a thin 
film of silicon of order 1𝜇𝜇which is subjected to specified im-
pulsive temperature at both boundary ends. This structure 
could resemble a real electronic micro structure, whose lateral di-
mensions are typically larger than its thickness. 

At t=0, the thin silicon film is at temperature T0.  At the 
time t >0, both the end surfaces of the thin silicon film at x=0 
and x=l are impulsively increased to a temperature Tw. The 
sudden application of spatial temperature gradient at both 
ends sets up a non-Fourier transient temperature distributions 
of DPL character (FT = 0.45) in the silicon film.  With time pro-
gressing, final steady state distributions is given by a single 
value temperature Tw which get into all linear points of the 
fluid. Thus the solution of the finite-differenced FDV equation 
(14) characterizing this numerical problem of one dimensional 
(FT = 0.45) non-Fourier DPL heat transfer in the silicon can be 
performed with the initial & boundary conditions and dimen-
sional- less variables: 
(x, t) =T0 = 300 K       and    𝜕 [ 𝑇(𝑥,   0)] 

𝜕𝑡
 = 0            t =0                 

(20)                   
                   T (0, t) = T (l, t) =Tw = 320 K           t > 0                  (21)                                                                                         

       T* =  𝑇(𝑥,𝑡)−𝑇0
𝑇𝑤−𝑇0

 ;    x* = 𝑥
𝑙
   ;    t* = 𝑡

𝑙2 𝛼⁄
                                 (22) 

We can  compute the T* by two means, first by solving  (14) & 
(19b) to obtain T(x, t) which on substituting in (22) gives T*. 
Secondly by substituting (22) in (14) and solving the (14) re-

𝜕𝑖𝑛+1  =  1

�1+ 
𝜏𝑞
∆𝑡�
�
�∆𝑼𝜏𝑞�𝑖

𝑛+1

𝜌𝑐
 + �1 + 2𝜏𝑞

∆𝑡
� 𝜕𝑖𝑛  ─ �𝜏𝑞

∆𝑡
� 𝜕𝑖𝑛−1� 
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∗ �

i

n+1
which on decoding through 

the steps similar to (16) to (19b) results in T*.  
As discussed earlier, because of the three time levels in this 

FDV method, initial data must be known at two time levels i.e. 
n-1 & n time levels. These data can be determined if the time 
derivative of temperature is specified at t=0. That is for the 
first time step ∆t, based on zero value of second order central 
finite difference expression of time derivative of temperature 
as given in (20) we obtain an initial condition as  

𝜕 [ 𝑇(𝑥,   0)] 
𝜕𝑡

 =0∴ 𝑇(𝑥,   0)𝑛+1−𝑇(𝑥,   0)𝑛−1

2∆𝑡
 ≈ 0  

→𝜕(𝑥, 0)𝑛−1= 𝜕(𝑥, 0)𝑛+1→𝜕𝒊𝒏−𝟏=𝜕𝒊𝒏+𝟏                                  (23) 
The finite differenced expression for 1-D DPL heat conduction 
equation (3) can be written as: 
−𝜏𝑇𝝀

∆𝒕
𝜕𝒊−𝟏𝒏+𝟏  + (1 + ∆𝑡

𝜏𝑞
  + 2𝜏𝑇𝝀

∆𝒕
  ) 𝜕𝒊𝒏+𝟏 ─  𝜏𝑇𝝀

 ∆𝒕
𝜕𝒊+𝟏𝒏+𝟏 = 

 ─𝜕𝒊𝒏−𝟏+ (λ─𝜏𝑇𝝀
∆𝒕

 )𝜕𝒊−𝟏𝒏  + (2 + ∆𝑡
𝜏𝑞

─ 2λ+ 2𝜏𝑇𝝀
∆𝒕

  ) 𝜕𝒊𝒏  + (λ─𝜏𝑇𝝀
∆𝒕

 )𝜕𝒊+𝟏𝒏   (24)           

Substituting the initial condition (23) in  (24), we obtain the 
finite differenced expression for first time step ∆t as: 

─𝜏𝑇𝝀
∆𝒕
𝜕𝒊−𝟏𝒏+𝟏  + (2 + ∆𝑡

𝜏𝑞
  + 2𝜏𝑇𝝀

∆𝒕
  ) 𝜕𝒊𝒏+𝟏  ─𝜏𝑇𝝀

∆𝒕
𝜕𝒊+𝟏𝒏+𝟏  = (λ─𝜏𝑇𝝀

∆𝒕
 )𝜕𝒊−𝟏𝒏  + 

(2 + ∆𝑡
𝜏𝑞

─ 2λ+ 2𝜏𝑇𝝀
∆𝒕

  ) 𝜕𝒊𝒏  + (λ─𝜏𝑇𝝀
∆𝒕

 )𝜕𝒊+𝟏𝒏                                           (25)                        

In the R.H.S of (25), the temperature values at all the grid 
points of 1-D domain are known from the initial (20) condi-
tions i.e. T0 . In the L.H.S of (25), for i= first and last interme-
diate grid points , i-1 = left  boundary grid point  and i+1 = 
right boundary grid point of 1-D domain respectively are at 
the temperature Tw as at both boundaries, the temperature is 
impulsively increased from T0 to Tw for t > 0. On applying the 
(25) to the all intermediate  grid points  , we obtain a tri-
diagonal  system of linear, algebraic equations whose solution 
by means of Thomas’ Algorithm  results in the values of the 
unknown temperature at all the intermediate grid points of  1-
D domain at time t=∆t.  

 As a result of (20), (21) and (25), we have known initial 
temperature data at two time levels i.e. n-1 (t=0) & n (t=∆t) 
time levels. Based on these initial temperature data at (n-1) & 
n time levels and (21), we now proceed to apply the present 
work’s derived FDV equation (14) along with (15a) to (15k) to 
all the intermediate grid points of 1-D domain for t= 2∆t. This 
leads to a tri-diagonal system of linear, algebraic equations 
with unknowns  ∆𝐔𝜏𝑞 at time level (n+1) for all the intermedi-
ate points of 1-D domain. Using Thomas’ Algorithm as stand-
ard for the treatment of the generated tri-diagonal systems of 

equations, we compute the values of �∆𝐔𝜏𝑞�i
n+1

 at all interme-

diate grids.  Finally the primitive transient temperature solu-
tion variables Tin+1at various intermediate grid points for (n+1) 
time level is obtained by substituting the computed element 

�∆𝐔𝜏𝑞�i
n+1

 in (19b). By this computational methodology, the 

computation of primitive temperature solution for  one di-
mensional non-Fourier DPL heat conduction (FT = 0.45) is re-
peated for each time step as the heat  wave proceeds through 
the constant property silicon thin film with constant speed ‘a’. 

Thomas’ algorithm of matrix solver should include the provi-
sion of updating𝑨𝑖𝑛, 𝑩𝑖

𝑛,𝑪𝑖𝑛&𝑸𝑖
𝑛 in (14) at subsequent time 

steps. The computational iteration through increasing time is 
continued till a final steady-state temperature distributions are 
reached throughout the grid points of the 1-D domain based 
on a pre-selected convergence criteria. 

                     From the starting time t=0, final results of spa-
tial dimensionless temperature distributions based on (22) at 
different instants of dimensionless time predicted by the FDV 
computational model are presented in Fig.1 (a)-(d). The FDV 
computational model upholds the existence of heat waves in 
the thin silicon film subjected to a specified impulsive temper-
ature at both boundary ends and demonstrates the propaga-
tion process of heat waves, the magnitude and profile of tran-
sient temperature. This brings FDV computational model in 
par with other existing computational models for non-Fourier 
DPL heat conduction simulation. As the temperature at the 
thin silicon film end boundaries are spontaneously raised, the 
left and the right curves moves towards the mid zone of the 
film i.e. the spatial dimensionless position x* =0.50  as  the 
time marches . At latter times, as the heat reaches near mid 
zone of the film, there is rise in the temperature of such zone. 
This can be clearly seen in Fig.1 (b)-(c).That is the temperature 
is propagated through the film with a finite speed contrasting 
the Fourier’s law of infinite speed which is physically inad-
missible. This finite speed of temperature transfer indicates 
that mode of heat transfer is by heat waves for the initial nano 
/ micro time. As the time further marches, the inverted dome 
at the middle zone rises toward T* = 1.0 line and the overall 
approximate ‘U’ shaped temperature profile curve flatten and 
approach the steady state mode of heat conduction. Numeri-
cally as shown in Fig.1 (c), at dimensional less t* = 0.7497 de-
noting t = 0.0922 μs the numerical solution is on the verge of 
converging and correspondingly steady state temperature 
distribution conditions are initiated to start  temperature fill-
ing the whole silicon film with dimensionless temperature T* 
→1.0 i.e. absolute temperature T(x, 0.0922) →Tw (=320 K ). 
Furthermore it was noted during the numerical iteration that 
beyond t* = 0.7497, the change in the dimensional less temper-
ature T*for each iteration is very small and it shall be noted in 
Fig.1 (d) that at t* = 0.9996 denoting t = 0.1230 μs the numeri-
cal solution is lastly converged based on a pre-selected con-
vergence criteria, the final steady state temperature distribu-
tion conditions are reached with temperature filling the whole 
silicon film at T(x, t ≥ 0.1230) =Tw (=320 K).  

Contour plots of the calculated 1st and 2nd order spatial,  
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Fig: 1(b)
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Fig: 1(c)

t*=0.1699
t*=0.2515
t*=0.3348
t*=0.7497
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Fig: 1(d)

t*=0.9996
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Fig: 2(a)
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Fig: 2(b)
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Fig: 2(c)
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Fig: 2(d)

t*=0.0183
t*= 0.0599
t*= 0.2515
t*= 0.9996

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.Non-Fourier DPL heat conduction solutions from the 
starting time t =0 for FT = 0.45 predicted by FDV computation- 
al method at different instants of time (a) t*=0.0000, 0.0049, 
0.0183 (b) t*=0.0266, 0.0433, 0.0599 (c) t*=0.1699, 0.2515, 0.3348, 
0.7497 (d) 0.9996 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
Fig.2. Diffusion FDV parameters contours for different in-
stants of times t*= 0.0183, 0.0599, 0.2515 & 0.9996 (a) 1st order-
Spatial s3 (b) 1st order-Temporal s3(c) 1st order-Spatio-temporal 
s3 (d) 2nd order-Spatio-temporal s4 

 

 
 
 
 

temporal and spatio-temporal diffusion FDV parameters 
are shown in Fig.2 (a)-(d) for t* = 0.0183 , 0.0599, 0.2515 and 
0.9996 which are the some of the  dimensionless time values 
taken from Figs .1(a) , 1(b), 1(c) and 1(d) respectively. It can be 
observed that contour distributions of the 1st order spatial dif-
fusion FDV parameters as shown in Fig.2 (a) resembles the 
contour of transient temperature field distributions illustrating 
the non-Fourier  / non-classical  DPL heat conduction in Fig. 1. 
(a) – (d) . Further on coalescing 1st order spatial diffusion FDV 
parameters with the 1st order temporal diffusion FDV parame-
ters as in Fig. 2 (b), we obtain the overall and effective 1st order 
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Fig: 3(a)

t*=0.0000
t*=0.0049
t*=0.0183
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Fig: 3(b)

t*=0.0266
t*=0.0433
t*=0.0599
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Fig: 3(c)

t*=0.1699
t*=0.2515
t*=0.3348
t*=0.7497
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Fig: 3(d)

t*=0.9996

spatio-temporal diffusion FDV parameters as shown in the  
Fig. 2.(c). It can be observed that these 1st order spatio-
temporal diffusion FDV parameters ‘s3’ resembles more close-
ly the contour of of transient temperature field distributions 
illustrating      the non-Fourier / non-classical DPL heat con-
duction in Fig.1 (a)-(d).Such intrinsic characteristics of 1st order 
convection &  diffusion FDV parameters resembling the flow 
field contour distributions were found in the earlier research 
[14], [15], [17], [18] on applying FDV method to fluid dynam-
ics and classical heat transfer problems. In the present work 
also true to its built-in nature, the character of the 1st order 
FDV parameters to resemble the field (temperature) contour 
distributions reappeared on applying FDV method to non-
Fourier / non- classical DPL heat transfer problems. This 
demonstrates the extension capabilities of FDV method to 
characterize and resolve non-Fourier / non- classical heat con-
duction. The contour plot of 2ndorder FDV parameterss4, ex-
ponentially proportional to the 1st order FDV parameters s3  is 
also shown in Fig.2 (d). 

 Final results of spatial dimensionless transient temperature 
distributions based on (22) at different instants of dimension-
less time predicted by the finite difference method (FDM) were 
also carried out  in the present work for the thin silicon film 
(FT = 0.45) with the same initial & boundary conditions as that 
for FDV method and is as shown in the Fig.3 (a)-(d).  The dis-
crete dimensionless times t* in the figure are the same as that 
opted in the Fig.1 (a)-(d)which depicts the non-Fourier DPL 
heat conduction solution by FDV method. In this method, the 
absolute transient temperatures ‘T’ are computed by the 1-D 
DPL heat conduction’s finite differenced expression given by 
(24).  Based on the initial temperature data at (n-1) & n time 
levels, we proceed to apply Finite difference equation (24) to all 
the intermediate grid points of 1-D domain for t= 2∆t. This 
leads to a tri-diagonal system of linear, algebraic equations 
with unknowns ‘T’ at time level (n+1) for all the intermediate 
points of 1-D domain. Using Thomas’ Algorithm as standard 
for the treatment of the generated tri-diagonal systems of 
equations, we compute the values of ‘T’ at all intermediate 
grids. With ‘T’ values based on (22), the dimensionless tem-
perature T* can be computed. On comparing the computation-
al results of FDM in the Fig.3 (a)-(d) with that of FDV method 
in the Fig.1 (a)-(d) for same discrete dimensionless times t* , 
we observe the respective contour of the transient temperature 
fields resemble to each other  approximately  but  not exact to 
each other for the non-Fourier DPL heat conduction. This dif-
ference in the numerical values creep due to the fact that in 
FDV algorithm for every time step, coefficients (𝐀𝐢

𝐧, 𝐁𝐢𝐧 &  𝐂𝐢𝐧) 
of (14) will change as the local temperature field changes and 
will modify the governing FDV (14) to solve the appropriate 
physics of hyperbolic, parabolic or mixed nature that are go-
ing on at each grid point. This is in contrast with FDM where 
normally such coefficients [coefficients in the L.H.S of (24)] are  

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.3. Non-Fourier DPL heat conduction solutions from the 
starting time t =0 for FT = 0.45 predicted by FDM computation-
al method at different instants of time (a) t*=0.0000, 0.0049, 
0.0183 (b) t*=0.0266, 0.0433, 0.0599 (c) t*=0.1699, 0.2515, 0.3348, 
0.7497 (d) 0.9996. 
expressed only in terms of the conducting medium’s thermo-
physical properties (α, 𝜏𝑞&𝜏𝑇) and computational spatial & 
time increments (∆x & ∆t) remains constant. 

The convergence history of the dimensionless temperature 
T* variable at the spatial dimensionless position x* = 0.2245 for 
the FDV computational method is as shown in Fig.4. The x* = 
0.2245 is the 12th grid point from the left boundary of the 1-D 
computational domain which is designated as the 1st grid 
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Dimensionless position x*= 0.2245

point. The temperature distributions in the thin silicon film 
were also used to estimate the needed to reach the steady state 
condition as shown in Fig.1 (d). The iteration process contin-
ues until the desired steady state results with following con-
vergence criteria: 
  �(∆𝑻∗)𝒊𝒏+𝟏� ≤ ε                                                                              (26)                                                                           
Where(∆𝑻∗)𝒊𝒏+𝟏= (𝑻∗)𝒊𝒏+𝟏 − (𝑻∗)𝒊𝒏    
and in the  present work, the preselected error = 10−5.     
 
 
 
 
 
 
 
 
 
 
Fig.4. Convergence history of dimensionless temperature T* 
variable for the FDV computational method.                                                                                                                                                                                                                                                                                                                                                                     

4  CONCLUSION 
On characterizing and resolving the non-Fourier DPL heat 

conduction equation (3) by the FDV computational method, 
the numerical simulation of the transient temperature field 
distributions in the one dimensional thin silicon film resem-
bling a micro-electronic structure subjected to spontaneously 
applied spatial temperature gradient at both boundary ends 
predicted a finite speed heat wave propagation in contrast 
with the classical parabolic heat conduction. Consequently a 
finite difference / finite element scheme based on FDV meth-
odology can now be utilized as an alternative to the existing 
computational methods for non-Fourier DPL heat conduction 
numerical simulations in micro / nano electronic devices & 
structures in semiconductor industry.  

Also true to its built-in nature, the character of the 1storder 
FDV parameters to resemble the field (temperature) contour 
distributions reappeared on applying FDV method to non-
Fourier / non- classical DPL heat transfer problems. This further 
demonstrates the extension capabilities of FDV method to 
characterize and resolve non-Fourier / non- classical heat con-
duction. 

The uniqueness of this FDV algorithm is that for every time 
step, coefficients (𝐀i

n,𝐁in&𝐂in) of governing partial differential 
equation (14) will change as the local temperature field changes 
spatially and temporally and accordingly will modify the 
same  governing FDV equation (14) to numerically solve the 
appropriate physics of hyperbolic, parabolic or mixed nature 
that are going on at each grid point. This is in contrast with 
other existing computational schemes where normally such 
coefficients [coefficients in the L.H.S of (24) , a case of finite 
difference scheme ] are expressed only in terms of the con-
ducting medium’s thermo-physical properties (α, 𝜏𝑞&𝜏𝑇) and 

computational spatial & time increments (∆x & ∆t) remains 
constant. 

Based on local adjacent spatial and temporal temperature 
field changes, this method provides the best distinct computa-
tional scheme for each grid point of the computational domain 
at a given iteration time step when compared to other CFD / 
CHT schemes for non-classical heat transfer numerical simula-
tion.   

Future broad research on FDV methodology will be re-
quired to develop local temperature based computational 
strategies also for the 3-D non-Fourier DPL heat conduction 
numerical simulation in micro / nano electronic devices with 
internal heat generation inclusion so as to accurately predict 
the transient temperature and heat flux distributions in the 
optimized thermal stability and design of such miniature de-
vices like MOSFETs which has become the building blocks of 
the semiconductor industry. 

The present work based on FDV methodology has initiated 
the development of such local temperature based computa-
tional strategies for non-Fourier DPL heat conduction numeri-
cal simulation that will facilitate the optimized thermal stabil-
ity and design of miniature transistors and circuits in the sem-
iconductor industry. 
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   NOMENCLATURE 

U           conservation solution variables column vector 
q           heat flux =q (x, t)                                                        
x, ∆x     cartesian coordinate and spatial step                    

l            thickness of silicon film                                        
t, ∆t      time and time step                                                 
τ           thermal relaxation time                                        
k           total conductivity                                          
T           temperature =T(x, t) 
𝑘1         effective thermal conductivity 
𝑘2 R                elastic conductivity with k= 𝑘1 + k2 
𝜌           mass density 
c           specific heat 
α           thermal diffusivity =  𝑘 𝜌𝜌⁄  
a        propagation speed of heat wave or second sound = ( α

 τ 
 ) 1/2 

C          Courant number = a ∆𝜕 ∆𝑥⁄  
K          retardation time = τ k1 k⁄  
𝐹𝑇         heat conduction model number 𝐊 τ⁄   
𝜏𝑞         phase lag of heat flux 
𝜏𝑇          phase lag of spatial temperature gradient 
𝐅𝑖          convection flux variables column vector 
𝐆𝑖          diffusion flux variables column vector                       
p          pressure  
v𝑖          velocity vector components   
O ( )     truncation error 
𝛿𝑖𝑗          kronecker delta  
 𝜏𝑖𝑗        viscous stress tensor 
 μ         dynamic viscosity 
 μm/ μs   micro meter / second 
 𝑼𝜏𝑞      =   U(x, t + 𝜏𝑞)  
 𝐆τT       =   G (x, t + τT) 
 TτT        =   T(x,   t + τT)  
 ∆𝐔𝜏𝑞

𝑛+1  =  𝐔𝜏𝑞
𝑛+1 − 𝐔𝜏𝑞

𝑛     
𝐛𝑖           diffusion Jacobian 
𝐜𝑖𝑗           diffusion gradient Jacobian 
s𝑎, s𝑏      single numerical parameters 
s3           1storder diffusion FDV parameter 
s4           2ndorder diffusion FDV parameter 
ω           user defined specified small number 
ε             error │(𝐓∗)𝐢𝐧+𝟏 − (𝐓∗)𝐢𝐧 │ 
Superscript  
 n, n+1           running index in the time direction    
Subscript 
 i, j                  co-ordinate dimension counters =1, 2, 3 in a  
                       partial differential equation 
i-1, i, i+1        running index in the x direction in a  
                       finite differenced equation  
                       i.e. represent grid points in I-D domain. 
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